ListRA-92 The Headmaster
Posts : 93 Cash : 394 Appreciations : 0 Location : antara ada dan tiada~ :- Jenjang Pendidikan : Kuliah Join date : 2010-10-15 Status : ADT Listra Linier Berkait :hammer:
| Subject: [Script-WIP] Listra 2D Map Graph & Pathfinding Modules Fri Dec 10, 2010 10:22 am | |
| Sementara aku suka mempelajari Matematika Diskrit tentang Graf dan Pohon, aku pelajari algoritma pathfinding dan buat scriptnya dalam GML dan Flash. Okay, ini scriptnya GML2D Map Graph & Pathfinding Algorithms. Script ini untuk membangun graf dari matriks map dan melakukan pathfinding (mencari jalan terpendek karakter dari suatu posisi ke posisi tujuan) - Code:
-
#define dijkstra /* Dijkstra's Algorithm
@> Function * To find a shortest path from starting vertex (s) to target vertex (t) and return path distance from s to t.
@> Required Data * n: number of grid vertices * s: index of source vertex * t: index of target vertex * global.nb[u,i]: i-th neighbor of grid vertex u, whose distance from u is 1 (as vertex index) * global.tc[u,i]: terrain cost from u to global.nb[u,i] (equal to 1 normally) * global.neighbors: maximum number of each vertices (usually 4 for 4-directional movement or 8 for 8-directional movement)
@> Required Scripts * remove(x): Removes x from array q (as priority queue) * add(x): Inserts x into array q (as priority queue) * u_nearest(): Returns index u of array q, where vertices_dist[u] is smallest
@> Usage Guide * For graph initialization, build a passage graph with script buildGraph(). * Then use this script on a game character. Set its variables s as index of the target's position vertex and t as index of the character's position vertex. * After that, you can trace the character's path by using vertices_prev[t]. * You can also use vertices_dist[t] or value returned by this script to show the character's distance to the target.
@> Credits * Bunga Tepi Jalan (bungatepijalan.wordpress.com) * Wikipedia
@> Notes * If you want to learn more about Dijkstra's algorithm, see the article at: http://en.wikipedia.org/wiki/Dijkstra's_algorithm * The path constructed by this algorithm is always the shortest. * This script is made based on pseudocode at that article, with improvement on efficiency. */
// Initializations nq=0 // Create open list q (as priority queue) add(s) // Add s into open list q for(i=1;i<=n;i+=1){ vertices_dist[i]=9999 // Unknown distance function from source to v vertices_prev[i]=0 // Previous node in optimal path from source } vertices_dist[s]=0 // Distance from source to source while(nq>0){ // The main loop //Finds vertex u with least value of path distance u_nearest() dist_u=vertices_dist[u] if(u==t){ //If u is the target, search completed and returns its distance. //You can add statements here, usually to read/construct path return dist_u } remove(u) for(i=1;i<=global.neighbors;i+=1){ v=global.nb[u,i] // where v has not yet been removed from Q. if(v!=0){ alt=dist_u+global.tc[u,i] if(alt<vertices_dist[v]){ // Relax (u,v) add(v) vertices_dist[v]=alt vertices_prev[v]=u } } } } //Statements below this will be executed if all remaining vertices //are inaccessible from source. This means that target vertex is isolated //from source vertex. Also means that vertices_dist[t]==9999. //You can add them here, usually to alert that no path is found.
#define BFS /* Best-first Search (BFS)
@> Function * To find a path from starting vertex (s) to target vertex (t).
@> Required Data * n: number of grid vertices * s: index of source vertex * t: index of target vertex * global.nb[u,i]: i-th neighbor of grid vertex u, whose distance from u is 1 (as vertex index) * global.tc[u,i]: terrain cost from u to global.nb[u,i] (equal to 1 normally) * global.neighbors: maximum number of each vertices (usually 4 for 4-directional movement or 8 for 8-directional movement)
@> Required Scripts * remove(x): Removes x from array q (as priority queue) * add(x): Inserts x into array q (as priority queue) * u_nearest3(): Returns index u of array q, where h_score[u] is smallest * findHeuristic(x,y): Returns heuristic (estimated) distance from vertex x to y
@> Usage Guide * For graph initialization, build a passage graph with script buildGraph(). * Then use this script on a game character. Set its variables s as index of the target's position vertex and t as index of the character's position vertex. * After that, you can trace the character's path by using vertices_prev[t]. * You can also use vertices_dist[t] or value returned by this script to show the character's distance to the target.
@> Credits * Bunga Tepi Jalan (bungatepijalan.wordpress.com) * Wikipedia
@> Notes * If you want to learn more about Best-first Search, see the article at: http://en.wikipedia.org/wiki/Best-first_search * The constructed path isn't always the shortest path. If you want to find the shortest path, don't use this. */
// Initializations nq=0 // Create open list q (as priority queue) add(s) // Add s into open list q for(i=1;i<=n;i+=1){ q1[i]=0 // Create closed list q1, The list of nodes already evaluated. vertices_prev[i]=0 // The map of navigated nodes. } vertices_dist[s]=0 h_score[s]=findHeuristic(s,t) // Heuristic distance while(nq>0){ // while the open list is not empty u_nearest3() if(u==t){ //If u is the target, search completed and returns its distance. //You can add statements here, usually to read/construct path return 0 } remove(u) q1[u]=1 // move current node from open list to the closed list for(i=1;i<=global.neighbors;i+=1){ v=global.nb[u,i] // successor of u if(v!=0){ if(!q1[v]){ add(v) vertices_dist[v]=vertices_dist[u]+global.tc[u,i] h_score[v]=findHeuristic(v,t) vertices_prev[v]=u }else{ if(vertices_dist[v]>vertices_dist[u]+global.tc[u,i]){ vertices_dist[v]=vertices_dist[u]+global.tc[u,i] vertices_prev[v]=u } } } } } //Statements below this will be executed if all remaining vertices //are inaccessible from source. This means that target vertex is isolated //from source vertex. //You can add them here, usually to alert that no path is found.
#define AStar /* A* Algorithm
@> Function * To find a shortest path from starting vertex (s) to target vertex (t) and return path distance from s to t.
@> Required Data * n: number of grid vertices * s: index of source vertex * t: index of target vertex * global.nb[u,i]: i-th neighbor of grid vertex u, whose distance from u is 1 (as vertex index) * global.tc[u,i]: terrain cost from u to global.nb[u,i] (equal to 1 normally) * global.neighbors: maximum number of each vertices (usually 4 for 4-directional movement or 8 for 8-directional movement)
@> Required Scripts * remove(x): Removes x from array q (as priority queue) * add(x): Inserts x into array q (as priority queue) * found(x): Returns whether x is in array q * u_nearest2(): Returns index u of array q, where f_score[u] is smallest * findHeuristic(x,y): Returns heuristic (estimated) distance from vertex x to y
@> Usage Guide * For graph initialization, build a passage graph with script buildGraph(). * Then use this script on a game character. Set its variables s as index of the target's position vertex and t as index of the character's position vertex. * After that, you can trace the character's path by using vertices_prev[t]. * You can also use vertices_dist[t] or value returned by this script to show the character's distance to the target.
@> Credits * Bunga Tepi Jalan (bungatepijalan.wordpress.com) * Wikipedia * Amit's A* Pages (http://www-cs-students.stanford.edu/~amitp/gameprog.html)
@> Notes * If you want to learn more about A* Algorithm, see the article at: http://en.wikipedia.org/wiki/A*_search_algorithm * A* is the best choice for pathfinding. Recommended to use this on most purposes. */
// Initializations nq=0 // Create open list q (as priority queue) add(s) // Add s into open list q for(i=1;i<=n;i+=1){ q1[i]=0 // Create closed list q1, The list of nodes already evaluated. vertices_prev[i]=0 // The map of navigated nodes. } vertices_dist[s]=0 // Distance from start along optimal path. h_score[s]=findHeuristic(s,t) // Heuristic distance f_score[s]=h_score[s] // Estimated total distance from start to goal. while(nq>0){ // while the open list is not empty u_nearest2() if(u==t){ //If u is the target, search completed and returns its distance. //You can add statements here, usually to read/construct path return dist_u } remove(u) q1[u]=1 // move current node from open list to the closed list for(i=1;i<=global.neighbors;i+=1){ v=global.nb[u,i] if(v!=0){ if(!q1[v]){ tentative_g_score=vertices_dist[u]+global.tc[u,i] if(!found(v)){ add(v) tentative_is_better=true }else if(tentative_g_score<vertices_dist[v]){ tentative_is_better=true }else{ tentative_is_better=false } if(tentative_is_better){ if(vertices_prev[v]!=0){ if(f_score[u]<f_score[vertices_prev[v]]){ vertices_prev[v]=u } }else{ vertices_prev[v]=u } vertices_dist[v]=tentative_g_score h_score[v]=findHeuristic(v,t) f_score[v]=vertices_dist[v]+h_score[v] } } } } } //Statements below this will be executed if all remaining vertices //are inaccessible from source. This means that target vertex is isolated //from source vertex. //You can add them here, usually to alert that no path is found.
#define remove //remove(ii) //Removes an element with value ii from priority queue q ii=argument0 iii=1 while(iii<=nq && q[iii]!=ii){ iii+=1 } iv=iii; if(iv<=nq){ if(iv<nq){ for(iii=iv;iii<=nq-1;iii+=1){ q[iii]=q[iii+1]; } } nq=nq-1; }
#define add //add(ii) //Inserts an element with value ii into priority queue q ii=argument0 if(nq==0){ q[1]=ii }else{ iii=1 while(iii<=nq && q[iii]<ii){ iii+=1 } iv=iii if(iv<=nq){ for(iii=nq;iii>=iv;iii-=1){ q[iii+1]=q[iii] } } q[iv]=ii } nq+=1
#define found //found(ii) //Returns whether element ii is in priority queue q ii=argument0 ff=false; if(nq>0){ for(iii=1;iii<=nq;iii+=1){ if(q[iii]==ii){ ff=true break } } } return ff;
#define u_nearest //u_nearest() //Returns index u of array q, where vertices_dist[u] is smallest d=vertices_dist[q[1]] u=q[1] if(nq>1){ for(ii=2;ii<=nq;ii+=1){ if(vertices_dist[q[ii]]<d){ d=vertices_dist[q[ii]]; u=q[ii]; } } }
#define u_nearest2 //u_nearest2() //Returns index u of array q, where f_score[u] is smallest if(nq>0){ d=f_score[q[1]] u=q[1] if(nq>1){ for(ii=2;ii<=nq;ii+=1){ if(f_score[q[ii]]<d){ d=f_score[q[ii]]; u=q[ii]; } } } }
#define u_nearest3 //u_nearest3() //Returns index u of array q, where h_score[u] is smallest if(nq>0){ d=h_score[q[1]] u=q[1] if(nq>1){ for(ii=2;ii<=nq;ii+=1){ if(h_score[q[ii]]<d){ d=h_score[q[ii]]; u=q[ii]; } } } }
#define findHeuristic //findHeuristic(x,y) //Calculates heuristic distance between vertex x and vertex y dx=((argument1-1) div global.w)-((argument0-1) div global.w) dy=((argument1-1) mod global.w)-((argument0-1) mod global.w) //Uncomment one of two statements below to select a heuristic formula //you want to use return sqrt(dx*dx+dy*dy) //Euclidean distance heuristic //return (dx+dy) //Manhattan distance heuristic
#define buildGraph /* buildGraph()
@> Function * To generate a passage graph of given 2-dimensional map.
@> Required Data * global.M[i,j]: Terrain type of cell of map matrix at row i and column j. Obstacles have terrain type 0. * global.passable[i]: The value is 0 if i is type of obstacle. Otherwise, determines terrain cost of terrain type i (normally 1). * h: number of rows of the map matrix * w: number of columns of the map matrix
@> Outputs * global.nb[u,i]: i-th neighbor of grid vertex u, whose distance from u is 1 (as vertex index) * global.tc[u,i]: terrain cost from u to global.nb[u,i] (equal to 1 normally)
@> Usage Guide * From a terrain map, build 2-dimensional map matrix global.M, and then use this script to generate a passage graph.
@> Credits * Bunga Tepi Jalan (bungatepijalan.wordpress.com) */ global.neighbors=4 //Maximum number of neighbors of each vertices. //You can change the value to: 4 for 4-directional movement, or 8 for //8-directional movement for(i=0;i<h;i+=1){ for(j=0;j<w;j+=1){ if(global.passable[global.M[i,j]]>0){ node=i*w+j for(k=1;k<=4;k+=1){ global.nb[node+1,k]=0 } //West if(j>0){ if(global.passable[global.M[i,j-1]]>0){ global.nb[node+1,1]=node global.tc[node+1,1]=global.passable[global.M[i,j]] } } //East if(j<w){ if(global.passable[global.M[i,j+1]]>0){ global.nb[node+1,2]=node+2 global.tc[node+1,2]=global.passable[global.M[i,j]] } } //North if(i>0){ if(global.passable[global.M[i-1,j]]>0){ global.nb[node+1,3]=node-w+1 global.tc[node+1,3]=global.passable[global.M[i,j]] } } //South if(i<h){ if(global.passable[global.M[i+1,j]]>0){ global.nb[node+1,4]=node+w+1 global.tc[node+1,4]=global.passable[global.M[i,j]] } } if(global.neighbors==8){ //Northwest if(i>0 && j>0){ if(global.passable[global.M[i-1,j-1]]>0){ global.nb[node+1,1]=node-w global.tc[node+1,1]=global.passable[global.M[i,j]]*sqrt(2) } } //Northeast if(i>0 && j<w){ if(global.passable[global.M[i-1,j+1]]>0){ global.nb[node+1,1]=node-w+2 global.tc[node+1,1]=global.passable[global.M[i,j]]*sqrt(2) } } //Southwest if(i<h && j>0){ if(global.passable[global.M[i+1,j-1]]>0){ global.nb[node+1,1]=node+w global.tc[node+1,1]=global.passable[global.M[i,j]]*sqrt(2) } } //Southeast if(i<h && j<w){ if(global.passable[global.M[i+1,j+1]]>0){ global.nb[node+1,1]=node+w+2 global.tc[node+1,1]=global.passable[global.M[i,j]]*sqrt(2) } } } } } } Tambahan: Maze Generation Algorithms. Script ini untuk membuat maze secara acak. Inputnya cukup dengan graf dari map kosong. NB: Pakai saja Recursive Backtracker buat bikin maze yang lebih susah. - Code:
-
#define DFSBacktracker /* Recursive Backtracker (using Depth-first Search)
Required data * s: current cell * global.nb[u,i]: i-th neighbor of cell u (1<=i<=4), whose distance from u is 1 */
// Initializations nq=global.n for(i=1;i<=global.n;i+=1){ q[i]=0 prev[i]=0 } u=s while(nq>=0){ if(!q[u]){ q[u]=1 //Mark the current cell as 'Visited' nq-=1 } avail=false for(i=1;i<=4;i+=1){ if(global.nb1[u,i]!=0){ avail=(avail || !q[global.nb1[u,i]]) } } //If the current cell has any neighbours which have not been visited if(avail){ //Choose randomly one of the unvisited neighbours do{ j=1+irandom(3) v=global.nb1[u,j] }until(!q[v]) prev[v]=u //remove the wall between the current cell and the chosen cell global.nb[u,j]=v if(j==1){ j=2 }else if(j==2){ j=1 }else if(j==3){ j=4 }else if(j==4){ j=3 } global.nb[v,j]=u //Make the chosen cell the current cell, and //repeat the search until all cells visited u=v }else{ //Make previously chosen cell the current cell (backtrack) if(prev[u]!=0){ u=prev[u] } } }
#define HuntNKill /* Hunt and Kill
Required data * s: current cell * global.nb[u,i]: i-th neighbor of cell u (1<=i<=4), whose distance from u is 1 */
// Initializations nq=global.n for(i=1;i<=global.n;i+=1){ q[i]=0 } u=s while(nq>=0){ if(!q[u]){ q[u]=1 //Mark the current cell as 'Visited' nq-=1 } avail=false for(i=1;i<=4;i+=1){ if(global.nb1[u,i]!=0){ avail=(avail || !q[global.nb1[u,i]]) } } //If the current cell has any neighbours which have not been visited if(avail){ //Choose randomly one of the unvisited neighbours do{ j=1+irandom(3) v=global.nb1[u,j] }until(!q[v]) //remove the wall between the current cell and the chosen cell global.nb[u,j]=v if(j==1){ j=2 }else if(j==2){ j=1 }else if(j==3){ j=4 }else if(j==4){ j=3 } global.nb[v,j]=u //Make the chosen cell the current cell, and //repeat the search until all cells visited u=v }else{ //Hunt! do{ u=1+irandom(global.n-1) }until(q[u]) } }
#define Prim /* Prim's Algorithm
Required data * s: index of source vertex * global.nb[u,i]: i-th neighbor of grid vertex u (1<=i<=4), whose distance from u is 1 */
// Initializations nq=0 for(i=1;i<=global.n;i+=1){ q1[i]=0 } u=1+irandom(global.n-1) q1[u]=1 add(u) while(nq<=global.n){ avail=false for(i=1;i<=4;i+=1){ if(global.nb1[u,i]!=0){ avail=(avail || !q1[global.nb1[u,i]]) } } //If the current cell has any neighbours which have not been visited if(avail){ //Choose randomly one of the unvisited neighbours do{ j=1+irandom(3) v=global.nb1[u,j] }until(!q1[v]) q1[v]=1 add(v) //remove the wall between the current cell and the chosen cell global.nb[u,j]=v if(j==1){ j=2 }else if(j==2){ j=1 }else if(j==3){ j=4 }else if(j==4){ j=3 } global.nb[v,j]=u } i=1+irandom(nq-1) u=q[i] } Save kedua code tsb dalam .gml dan tinggal pilih Import All Scripts aja FlashMGraph.as : Translate-an dari GML diatas utk algoritma2 pathfinding. - Code:
-
/* *============================================================================== * ## MGraph (Map Graph) *------------------------------------------------------------------------------ * This class generates a passage graph of given 2-dimensional map and uses it * for pathfinding analysis with Dijkstra's algorithm and A*. *------------------------------------------------------------------------------ * Usage Guide *------------------------------------------------------------------------------ * Build a 2-dimensional map matrix global.M, and then use * the constructor to generate a passage graph. *------------------------------------------------------------------------------ * Credits *------------------------------------------------------------------------------ * Bunga Tepi Jalan (bungatepijalan.wordpress.com) * Wikipedia *============================================================================== */ import PQueue; class MGraph { private var n, h, w, neighbors:Number; private var nb, tc, passable, vertices_dist, vertices_next:Array; function MGraph(M, pass:Array, nh:Number) { h = M.length; w = M[0].length; n = h*w; neighbors = nh; passable = pass; nb = new Array(n+1); tc = new Array(n+1); var node; for (var i = 0; i<h; i += 1) { for (var j = 0; j<w; j += 1) { if (passable[M[i][j]]>0) { node = i*w+j; nb[node+1] = new Array(); tc[node+1] = new Array(); for (var k = 1; k<=neighbors+1; k += 1) { nb[node+1].push(0); tc[node+1].push(0); } //West if (j>0) { if (passable[M[i][j-1]]>0) { nb[node+1][1] = node; tc[node+1][1] = passable[M[i][j]]; } } //East if (j<w) { if (passable[M[i][j+1]]>0) { nb[node+1][2] = node+2; tc[node+1][2] = passable[M[i][j]]; } } //North if (i>0) { if (passable[M[i-1][j]]>0) { nb[node+1][3] = node-w+1; tc[node+1][3] = passable[M[i][j]]; } } //South if (i<h) { if (passable[M[i+1][j]]>0) { nb[node+1][4] = node+w+1; tc[node+1][4] = passable[M[i][j]]; } } if (neighbors == 8) { //Northwest if (i>0 && j>0) { if (passable[M[i-1][j-1]]>0) { nb[node+1][5] = node-w; tc[node+1][5] = passable[M[i][j]]*Math.sqrt(2); } } //Northeast if (i>0 && j<w) { if (passable[M[i-1][j+1]]>0) { nb[node+1][6] = node-w+2; tc[node+1][6] = passable[M[i][j]]*Math.sqrt(2); } } //Southwest if (i<h && j>0) { if (passable[M[i+1][j-1]]>0) { nb[node+1][7] = node+w; tc[node+1][7] = passable[M[i][j]]*Math.sqrt(2); } } //Southeast if (i<h && j<w) { if (passable[M[i+1][j+1]]>0) { nb[node+1][8] = node+w+2; tc[node+1][8] = passable[M[i][j]]*Math.sqrt(2); } } } } } } } function findHeuristic(x1, y1, x2, y2:Number) { return Math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)); } public function dijkstra(x1, y1, x2, y2:Number) { // Initializations var s = y1*w+x1+1; var t = y2*w+x2+1; var q = [0];// Create open list q (as priority queue) q = PQueue.add(q, s);// Add s into open list q vertices_dist = new Array(); var vertices_prev = new Array(); vertices_next = new Array(); for (var i = 0; i<=n; i++) { vertices_dist.push(9999);// Unknown distance function from source to v vertices_prev.push(0);// Previous node in optimal path from source vertices_next.push(0); } vertices_dist[s] = 0;// Distance from source to source var u, v, alt; while (q.length>1) {// The main loop //Finds vertex u with least value of path distance var d = vertices_dist[q[1]]; u = q[1]; if (q.length>1) { for (var ii = 2; ii<=q.length; ii++) { if (vertices_dist[q[ii]]<d) { d = vertices_dist[q[ii]]; u = q[ii]; } } } if (u == t) { //If u is the target, search completed and returns its distance. //You can add statements here, usually to read/construct path while (vertices_prev[u] != s && vertices_prev[u] != 0) { vertices_next[vertices_prev[u]] = u; u = vertices_prev[u]; } vertices_next[s] = u; return vertices_dist[t]; } q = PQueue.remove(q, u); for (var i = 1; i<=neighbors; i++) { v = nb[u][i];// where v has not yet been removed from Q. if (v != 0) { alt = vertices_dist[u]+tc[u][i]; if (alt<vertices_dist[v]) {// Relax (u,v) q = PQueue.add(q, v); vertices_dist[v] = alt; vertices_prev[v] = u; } } } } //Statements below this will be executed if all remaining vertices //are inaccessible from source. This means that target vertex is isolated //from source vertex. Also means that vertices_dist[t]==9999. //You can add them here, usually to alert that no path is found. } public function AStar(x1, y1, x2, y2:Number) { // Initializations var s = y1*w+x1+1; var t = y2*w+x2+1; var q = [0];// Create open list q (as priority queue) var q1 = new Array();// Create closed list q1, The list of nodes already evaluated. q = PQueue.add(q, s);// Add s into open list q vertices_dist = new Array(); var vertices_prev = new Array(); vertices_next = new Array(); var h_score = new Array(); var f_score = new Array(); for (var i = 0; i<=n; i++) { q1.push(0); vertices_dist.push(9999);// Unknown distance function from source to v h_score.push(0); f_score.push(0); vertices_prev.push(0);// Previous node in optimal path from source vertices_next.push(0); } vertices_dist[s] = 0;// Distance from start along optimal path. h_score[s] = findHeuristic(x1, y1, x2, y2);// Heuristic distance f_score[s] = h_score[s];// Estimated total distance from start to goal. var u, v, alt, tentative_g_score, tentative_is_better; while (q.length>1) {// The main loop //Finds vertex u with least value of path distance var d = f_score[q[1]]; u = q[1]; if (q.length>1) { for (var ii = 2; ii<=q.length; ii++) { if (f_score[q[ii]]<d) { d = f_score[q[ii]]; u = q[ii]; } } } if (u == t) { //If u is the target, search completed and returns its distance. //You can add statements here, usually to read/construct path while (vertices_prev[u] != s && vertices_prev[u] != 0) { vertices_next[vertices_prev[u]] = u; u = vertices_prev[u]; } vertices_next[s] = u; return vertices_dist[t]; } q = PQueue.remove(q, u); q1[u] = 1; for (var i = 1; i<=neighbors; i++) { v = nb[u][i];// where v has not yet been removed from Q. if (v != 0) { if (!q1[v]) { tentative_g_score = vertices_dist[u]+tc[u][i]; if (!PQueue.found(q, v)) { q = PQueue.add(q, v); tentative_is_better = true; } else if (tentative_g_score<vertices_dist[v]) { tentative_is_better = true; } else { tentative_is_better = false; } if (tentative_is_better) { if (vertices_prev[v] != 0) { if (f_score[u]<f_score[vertices_prev[v]]) { vertices_prev[v] = u; } } else { vertices_prev[v] = u; } vertices_dist[v] = tentative_g_score; h_score[v] = findHeuristic(Math.floor((v-1)/w), (v-1)%w, x2, y2); f_score[v] = vertices_dist[v]+h_score[v]; } } } } } //Statements below this will be executed if all remaining vertices //are inaccessible from source. This means that target vertex is isolated //from source vertex. Also means that vertices_dist[t]==9999. //You can add them here, usually to alert that no path is found. } public function get _h() { return h; } public function get _w() { return w; } public function nextp(x:Number) { return vertices_next[x]; } } Scripts + Test Drivers Downloads (Beta)GML: http://ifile.it/o5bm9vx/GSA.zipFlash: http://ifile.it/kynuj73/GSAFlash.zipTest Driver Demo Screenshot- Awas gede!:
Scriptku masih lom benar2 selesai, tapi semoga bermanfaat buat game RPG-mu Rencananya kalo uda selesai, script ini nanti bakal ditranslate ke RGSS dan XNA (kalo uda belajar cukup ) | |
|